Pleiger Plastics is a division of Paul Pleiger Maschinenfabrik. The Pleiger group has over 500 employees worldwide with manufacturing facilities in the United States, Germany, Korea and China. Pleiger manufactures plastics, hydraulics, electronics, pneumatics, pumps, laser optics and naval products.

Pleiger Plastics Company
P.O. Box 1271
498 Crile Road
Washington, PA 15301-1271
Tel: (724) 228-2244 Fax: (724) 228-2253
(800) PLEIGER (800-753-4437)
info@pleiger.com / www.pleiger.com

Contacts (USA):
Ron Beiersdorf- Sales Manager
Bob White- Sales Representative
Lauren Sitosky- Sales Representative
Travis Kirby - Sales Representative
Jessica Platt- Inside Sales

E-Mail:
ron@pleiger.com
jbob@pleiger.com
lauren@pleiger.com
travis@pleiger.com
jess@pleiger.com

Pleiger Group of Companies
Worldwide Network

- **Paul Pleiger Maschinenfabrik GmbH & Co. KG**
 Witten, Germany
 www.pleiger.de

- **Pleiger Kunststoff GmbH & Co. KG**
 Buchholz, Germany
 www.pleiger-kunststoff.de

- **Pleiger Thermoplast GmbH & Co. KG**
 Raisdorf, Germany
 www.pleiger-thermoplast.de

- **Pleiger Far East Co. Ltd.**
 Pusan, Korea
 www.pleiger.kr

- **Pleiger Electro-Hydraulic Technology Co. Ltd.**
 Shanghai, China
 www.pleiger.de/pm

PRINCIPLES OF POLYURETHANE

Tough Urethanes for Tough Applications
WHAT IS POLYURETHANE?

Originating during World War II as an alternative to rubber, polyurethane evolved from a laboratory curiosity into an industrial product. Combining the outstanding properties of rigid plastic, metals, and rubbers, a superior plastic was born. What sets polyurethane apart from other elastomers and steel is its resilience and overall toughness.

Urethanes are made up of diisocyanate groups, polyols and an extender
- Polyol: Ester, Ether, Caprolatones or Carbonates
- Isocyanate: MDI, TDI, NDI, PPDI or TODI
- Extender: Chain extender between two isocyanates (Glycol and Amine)

The terms urethane and polyurethane can be used interchangeably. There is a wide variety of urethanes available that are similar in characteristics but differ in specific properties.

Available as Thermosets

Thermoset: Chemicals are combined and once the reaction occurs, it is poured into a mold before the urethane cures or sets. This process yields the high performance properties that are not obtained by any other process. Pleiger Plastics uses this process to make the Plei-Tech line of urethanes.

KEY TERMS

Modulus: The stiffness of an elastomer, measured typically as the force required to stretch a strip of the elastomer to a given extent. Modulus is closely related to hardness. Measured in psi.

Mold Release Agent: A lubricant that prevents the surface from adhering to the mold. Typically silicon based but can also be wax or teflon.

Polyester: Polyester’s are resistant to petroleum based chemicals and are highly resistant to cutting, tearing, and chunking. There are many varieties of polyesters each expressing unique properties.

Polyether: Polyether’s chemical makeup is a continuous chain making it hydrolysis resistant. In addition to water, it is also resistant to acid based chemicals and gasoline. Used in high-speed and load-bearing applications and shock absorbing applications. There are two types of ether: PPG which is the lowest performance and PTMEG which is the highest performance type.

Polymer: The solid polyurethane produced from the chemical reaction between the prepolymer and the curative.

Polyurethane: The polymer prepared by reacting a polyisocyanate (prepolymer) with polyhydroxy-terminated compound (curative).

Service Temperature: Ambient temperature where an elastomer will still maintain its modulus and physical properties. Thermoset materials maintain a constant modulus over temperature up to their service temperatures. Thermoplastic modulus and physical properties typically decline as temperature increases.

Shape Factor: Constant used in spring calculations which relates compressed area to “free to bulge” area.

Tear Strength: A measure of the resistance of the elastomer to tear and gouge. Tear strength usually correlates to the material’s abrasion resistance. ASTM D 470 or 624

Tensile Strength: The resistance of a material to a force tending to tear it apart, measured as the maximum tension the material can withstand without tearing. Measured in psi. ASTM D 412
KEY TERMS

Abrasion Resistance- The ability of a material to withstand mechanical action such as rubbing, scraping, or erosion, that tends progressively to remove material from its surface. Such an ability helps to maintain the material's original appearance and structure. Also known as Taber or NBS Index. Measured in mg loss.

Bashore Resilience- An ASTM test (D-2632) for the rebound characteristics of elastomer. High Bashore resilience generally implies low heat buildup in the roll when used at high speeds under high loads. Measured in % rebound.

Coefficient of Friction- Measure of a body’s resistance to motion. Static and Kinetic; normally static is significantly higher than kinetic.

Compression Set- The characteristic of the elastomer to remain permanently deformed after deforming forces are removed. ASTM D 395

Conductivity- The measure of a material’s ability to transmit electrical energy. Measured in ohm-cm.

Creep- The tendency of an elastomer or plastic to change shape over time.

Durometer- The hardness of the final elastomer, or the gauge used to measure the hardness. Shore A scales (ASTM D-2240) is commonly used as well as Shore D & O.

Elastomer- A polymer that expresses elastic properties.

Filled- Term describing a material which has secondary compounds added to affect physical properties and performance. Common fillers are glass fiber, MOS₂, clay, and silican.

Hysteresis- The tendency of an elastomer to build up heat through cycles of stress and relaxation. Higher stress or cycle speeds increase heat build up. Hysteresis should not be compared or confused with heat resistance.

Isocyanate- Compound that reacts with a polyol and extender to form polyurethane.

MDI - Methylene diphenyl diisocyanate
NDI - Naphthalene diisocyanate
TDI - Toluene diisocyanate
PPDI - Para-phenylene diisocyanate
TODI - Ditolyene diisocyanate

ADVANTAGES OF POLYURETHANE

Polyurethane compounds possess an extraordinary combination of physical, mechanical, and environmental properties. The type of resin and the ratio between the resin and the curative can be varied to optimize some of these properties.

Advantages to using Polyurethane:
- Excellent resilience
- Extra toughness and durability
- Very high load bearing and cut resistance
- Low compression set
- Very good impact resistance
- Excellent abrasion resistance
- Oil, solvent and water resistance

Polyurethane Application Comparisons

Polyurethanes have definite advantages over plastics, conventional rubber and metals which make them a better substitute in applications where these materials are normally used.

<table>
<thead>
<tr>
<th></th>
<th>vs. Rubber</th>
<th>vs. Metal</th>
<th>vs. Plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>high abrasion resistance</td>
<td>lightweight</td>
<td>high impact resistance</td>
<td></td>
</tr>
<tr>
<td>high cut, tear resistance</td>
<td>noise reduction</td>
<td>elastic memory</td>
<td></td>
</tr>
<tr>
<td>superior load bearing</td>
<td>abrasion resistance</td>
<td>abrasion resistance</td>
<td></td>
</tr>
<tr>
<td>thick section molding</td>
<td>less expensive fabrication</td>
<td>noise reduction</td>
<td></td>
</tr>
<tr>
<td>colorability</td>
<td>corrosion resistance</td>
<td>broader hardness range</td>
<td></td>
</tr>
<tr>
<td>oil resistance</td>
<td>resilience</td>
<td>resilience</td>
<td></td>
</tr>
<tr>
<td>ozone resistance</td>
<td>impact resistance</td>
<td>thick section molding</td>
<td></td>
</tr>
<tr>
<td>castable nature</td>
<td>flexibility</td>
<td>lower cost tooling</td>
<td></td>
</tr>
<tr>
<td>broader hardness range</td>
<td>easily moldable</td>
<td>low temperature resistance</td>
<td></td>
</tr>
</tbody>
</table>
SELECTING POLYURETHANE

All Polyurethanes are not equal when it comes to performance. A thermoset urethane is created by the molder. The type of polymer, the process parameters, and the ratio of curative play a critical role in the performance of the product. Pleiger Plastics uses only the highest quality raw materials as well as sophisticated procedures to produce the high performance products.

Pleiger offers engineering services to design or re-design molded parts to optimize performance and moldability. Once designs are finalized, low cost prototypes are produced for field testing and selection of the best compound.

When using polyurethane keep in mind these few points:
- What is your application? (Bumper, wheels, scrapers)
- What type of wear is the part exposed to? (Impact, sliding, impinging)
- What are the environmental factors? (Chemicals, temperature, indoor/outdoor)
- What material are you currently using? (Rubber, PVC, metal)
- Is this part typically replaced? If so, how often?
- What are its means of failure?

Determining the material’s durometer is critical when selecting polyurethane. The durometer is one way to indicate the hardness or material’s resistance to permanent indentation. The Hardness Scale gives an approximate measure of materials and the corresponding durometer. Pleiger offers urethanes in 5A-75D.

WHY CHOOSE PLEIGER PLASTICS?

Founded in 1986, Pleiger Plastics Company was one of the first molders in the United States to process Vulkollan, Europe’s highest performing polyurethane systems for molding engineering parts. Pleiger Plastics’ business philosophy is to provide high performance, high quality polyurethanes worldwide.

By offering full service molding, Pleiger Plastics gives its business partner cost-effective solutions to difficult problems. Starting with short turn-around quotations, the Pleiger solution lets our customers build the framework for a successful molding project.

In addition to custom molding services, Pleiger Plastics offers a full range of polyurethane sheet, rod, and tube semi-finished goods. Durometers range from 5A to 80D. Special colors and sizes are available upon request.

A full testing lab is used to insure that products manufactured by Pleiger meet our published specifications. These lab services can also be used to identify existing products and determine an appropriate substitute. All of these services are combined to optimize design and performance, which leads to longer lasting products that can be effectively molded and delivered anywhere worldwide.
VULKOLLAN (PLEI-TECH 15)

Vulkollan is a highly elastic cross-linked polyurethane elastomer. It is the highest grade urethane available, due to its superior mechanical characteristics:
- High dynamic load capacity
- Higher abrasion and tear resistance than other compounds
- Highest modulus of elasticity of all elastomers
- Excellent wear resistance and impact resilience
- Reduced compression set
- Good chemical resistance to UV radiation, mineral oils, greases, and solvents

Specially recommended for towing applications where load capacity, rebound resilience, continuous use, speed and durability are mandatory. Therefore, Vulkollan is preferred for drive and load wheels for industrial trucks, and heavy duty material handling applications.

VULKOLLAN FOAM (PT-15 FOAM)

Plei-Tech 15 Foam is an open/closed cell polyurethane foam based upon Vulkollan (Plei-Tech 15) chemistry. It is excellent for shock absorption of light to medium loads at high frequency. A cellular Vulkollan piece is able to be compressed up to 70% of its original height with minimal permanent set. Cellular Vulkollan complements solid Vulkollan in applications where increased deformability and reduced stiffness are required. PT-15 foam parts are available in custom molded shapes as well as rod, sheet and tube.

Most Popular Plei-Tech Materials

<table>
<thead>
<tr>
<th>Plei-Tech</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plei-Tech 00</td>
<td>Polyester based compound developed in conjunction with Plei-Tech 22 to offer alternatives to Plei-Tech 15. Plei-Tech 00 offers outstanding tear strength, good abrasion resistance, excellent resistance to petroleum-based chemicals, and is suited for moderate dynamic loading. Plei-Tech 00 is available in 70° A to 95° A. Maximum service temperature is 200° F. Standard color is red, however, this product is not color stable.</td>
</tr>
<tr>
<td>Plei-Tech 22</td>
<td>Polyester based polyurethane. Plei-Tech 22 is a compound developed by Pleiger Plastics Company as an alternative to Plei-Tech 15. Plei-Tech 22 offers excellent abrasion resistance, solvent resistance, and resistance to petroleum based chemicals. Plei-Tech 22 is available in hardnesses from 40° A to 52° D. This compound generally meets MSHA approval. Maximum service temperature is 190° F. Color coding is available.</td>
</tr>
<tr>
<td>Plei-Tech 95</td>
<td>Plei-Tech 95 is a polyether based polyurethane. Plei-Tech 95 offers excellent performance in dynamic loading and shock absorption. Plei-Tech 95 is available in hardnesses from 80° A to 75° D. Plei-Tech 95 is suited for applications involving hydrolysis, mild acids, and gasoline. This product generally meets MSHA approval. Maximum service temperature is 200° F. Standard color is black, however, this material is not color stable.</td>
</tr>
<tr>
<td>Plei-Tech 15</td>
<td>Plei-Tech 15 is a polyester based polyurethane that utilizes NDI as a hard segment. Plei-Tech 15 offers excellent abrasion and cut resistance, and is well suited for high dynamic loading. Plei-Tech 15 performs well in solvent and oil environments, and is available in hardness from 60° A to 60° D. This compound generally meets MSHA approval. Maximum service temperature is 200° F. Color is natural which is a light brown that turns dark brown when exposed to UV light. (No properties are lost in this color transformation).</td>
</tr>
</tbody>
</table>
CUSTOM MOLDED

Pleiger Plastics was founded on the idea of molding high performance polyurethanes to meet and exceed the requirements of the most extreme applications. Today we are even more committed to that simple concept.

- Engineering new parts based on the application
- Matching the right compound to your application
- Tooling design for any application
- Cost effective molding techniques

Product Applications

<table>
<thead>
<tr>
<th>INDUSTRY</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Scrapers / Compaction Equipment / Bucket Scrapers / Bumpers / Tampers / Rammers</td>
</tr>
<tr>
<td>Public Municipalities</td>
<td>Salt & Sand Spreaders - Salt Trucks Cutting Edges - Plow Trucks / Check Valve Balls / Pumps</td>
</tr>
<tr>
<td>Mining</td>
<td>Belt Scrapers / Conveyor Belts / Draft Rubbers</td>
</tr>
<tr>
<td>Power Transmission</td>
<td>Couplings / Machinery / Vibration Isolation</td>
</tr>
<tr>
<td>Corrugated Box</td>
<td>Soft Touch Rollers / Box Machinery / Cutting Bars / Die Blankets</td>
</tr>
<tr>
<td>Newspaper</td>
<td>Cutting Bars / Printing Press / Foam Pads / Doctor Blades</td>
</tr>
<tr>
<td>Post Office</td>
<td>Rollers / Sorting Machinery</td>
</tr>
<tr>
<td>Printing</td>
<td>Rollers / Cutting Bars / Transporting</td>
</tr>
<tr>
<td>Laundry</td>
<td>Rollers / Material Handling</td>
</tr>
<tr>
<td>Automotive</td>
<td>Wheels / AGV’s / Automated Conveyors / Bushings / Mounts / Suspension Products</td>
</tr>
<tr>
<td>Forklifts</td>
<td>Wheels / Load Tires</td>
</tr>
<tr>
<td>Elevator & Escalator</td>
<td>Rollers / Guide Rollers / Bumpers</td>
</tr>
</tbody>
</table>

Vulkollan Bumpers isolate and dampen high shock loads with minimal permanent set.

Doctor Blades are used in manufacturing, coating, printing and wastewater treatment industries.

Soft Touch Rollers used in transport prevent damage to surfaces while retaining excellent abrasion resistance.

Check Valve Balls are excellent for abrasion applications. Available with and without inserts.

PT15 Wheels are excellent in high load carrying applications. Exhibits high abrasion resistance and outstanding performance.

Vulkollan Couplings allow smooth transmission of high torque.

Cutting Edge Blades are used by airports, municipalities, etc. Abrasion resistant and resilient to prevent damage and absorb impact.